

Mark Scheme (Results) January 2011

GCE

GCE Chemistry (6CH04/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2011

Publications Code UA026200

All the material in this publication is copyright © Edexcel Ltd 2011

Section A (multiple choice)

Question	Correct Answer	Mark
Number	Correct Ariswer	Mark
1 (a)	D	1
- ()		
Question	Correct Answer	Mark
Number		
1 (b)	В	1
Question	Correct Answer	Mark
Number		4
1 (c)	A	1
Ougstion	Correct Answer	Mark
Question Number	Correct Answer	Mark
2	D	1
		•
Question	Correct Answer	Mark
Number		
3	D	1
		<u> </u>
Question	Correct Answer	Mark
Number		
4	В	1
		1
Question	Correct Answer	Mark
Number		1
5	С	1
Question	Correct Answer	Mark
Number	Correct Ariswer	maik
6	С	1
Question	Correct Answer	Mark
Number		
7 (a)	A	1
Question	Correct Answer	Mark
Number		
7 (b)	A	1
Ouestion	Correct Answer	Mark
Question Number	COLLECT ALISWEI	Maik
7 (c)	D	1
, (=)	[<u> </u>
Question	Correct Answer	Mark
Number		
8	В	1
	1	1

_		
Question	Correct Answer	Mark
Number		
9	D	1
Question	Correct Answer	Mark
Number		
10	С	1
Question	Correct Answer	Mark
Number		
11	D	1
Question	Correct Answer	Mark
Number		
12	D	1
Question	Correct Answer	Mark
Number		
13	A	1
Question	Correct Answer	Mark
Number		
14	В	1
Question	Correct Answer	Mark
Number		
15	С	1
Question	Correct Answer	Mark
Number		
16	A	1
£	•	l l

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
17 (a)	ΔS_{system} = (3x2x65.3 +197.6) - (186.2 + 188.7) Correct data for CH ₄ and CO (186.2 and 197.6) (1)		2
	= (+) 214.5 / 215 (J mol ⁻¹ K ⁻¹) / (+) 0.2145 / 0.215 kJ (mol ⁻¹ K ⁻¹) (1)	214 0.214	
	Units must be shown if data has been converted to kJ		
	Full marks (2) for correct answer without working Ignore sf except 1		
	Answer of -214.5 scores (1)		
	Answer of +18.6 if entropy of H not doubled scores (1)		
	Answer of -46.7 if entropy of H_2 not tripled scores (1)		
	ALLOW TE in second mark for minor error in data e.g. writing 63.5 instead of 65.3. No TE if data used is not entropy of compounds.		

Question Number	Acceptable Answers	Reject	Mark
17 (b)	$(\Delta S_{\text{surroundings}}) = \frac{-\Delta H}{T}$ Expression or use of expression, $\frac{-206.1 \times (1000)}{298}$ (1) = -691.6 J (mol ⁻¹ K ⁻¹)/ -0.6916 kJ (mol ⁻¹ K ⁻¹) (1) Ignore sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
17 (c)	$\Delta S_{\text{total}} = (214.5 + (-691.6)) = -477.1 \text{ (J mol}^{-1} \text{ K}^{-1}) / - 0.4771 \text{ (kJ mol}^{-1} \text{ K}^{-1}) \text{ (1)}$		2
	ALLOW TE for answer to (a) plus answer to (b). If 214.5 is added to -0.69 no TE unless -0.69 is specified to be in joules. Ignore sf except 1	Addition of value in J to specified value in kJ	
	Negative / less than zero (so not spontaneous) / would be positive if spontaneous. (1) ALLOW "feasible" for spontaneous.	Comments on kinetic stability	
	If answer to calculation is positive, accept comment that it would be expected to be negative if not spontaneous		

Question Number	Acceptable Answers		Reject	Mark
*17 (d) (i)	$K_p = \frac{(pH_2)^3 x (pCO)}{(pCH_4)(pH_2O)}$	(1)	Square brackets	6
	4 Correct partial pressures	(3)		
	CH ₄ H ₂ O CO H ₂			
	pp 0.25 0.25 0.375 1.125			
	ALLOW partial pressures as fractions			
	$K_p = \frac{(1.125)^3 \times (0.375)}{(0.25)(0.25)} = 8.54 \text{ atm}^2$			
	value of K_p (1)			
	unit (1) (Stand alone mark)			
	Correct calculation without working scalculation marks.	scores the 5		
	TE from K_p expression if inverted Ignore sf except 1		TE for K_p expression with addition, not multiplication	
	If any partial pressures are incorrect Calculating total number of moles (6.		matcipitedcion	
	Calculating mole fractions (0.125, 0.0.5625 if total number of moles is contained to the co			
	Multiplying mole fractions by total pratm) (1)	essure (x 2		
	value of K_p (1)			
	unit (1) (stand alone mark)			
	ALLOW TE in value of $K_{\rm p}$ only from in partial pressures, not using values in not using equilibrium moles			
	If treated as a K_c calculation following expression: K_p expression (1) units atm ² (1)	g K _p		
	Max. mark (2)			

Question	Acceptable Answers	Reject	Mark
Number			
17 (d) (ii)	$\Delta S_{\text{total}} = (8.31 \text{ ln } 8.54) = (+)17.8 \text{ (J mol}^{-1} \text{ K}^{-1})$ Accept any value that rounds to 17.8		1
	TE from value in (i)		
	K_p value of 87.48 (obtained by treating calculation in (i) as K_c) gives $\Delta S_{total} = 37.16$ / 37.12		

Question Number	Acceptable Answers	Reject	Mark
17 (d) (iii)	17.8 = 225 - $\frac{206.1 \times 1000}{T}$ (1) T = $(\frac{206.1 \times 1000}{207.2})$ = 995 / 990 (K) (1) Correct answer with no working shown scores 2 Correct method with wrong answer or missing 10 ³ scores 1 TE from (ii) K_p value of 87.48 gives T = 1097		2
	OR If ΔS_{total} is taken as zero $0 = 225 - \frac{206.1 \times 1000}{T}$ (1) $T = 916K$ (1) K_p value of 87.48 gives $T = 916$ Ignore sf except 1		

Question	Acceptable Answers	Reject	Mark
Number			
*17 (e)	$\begin{array}{c} \Delta S_{\text{surroundings}} \ / \ \underline{-\Delta H} \\ T \\ \text{becomes less negative making } \Delta S_{\text{total}} \ \text{more positive} \\ \text{(as T increases)} \end{array}$	Le Chatelier statements without reference to entropy changes	2
	OR $\Delta S_{surroundings}$ / $\frac{-\Delta H}{T}$ becomes less negative making ΔS_{total} greater (as T increases)		
	OR (magnitude of) $\Delta S_{surroundings}$ becomes less / lower making ΔS_{total} more positive / greater (as T increases) (1)		
	Because ΔS_{total} increases equilibrium constant increases (1)		
	OR		
	value of ΔS_{total} at new temperature is more than at 298K (1) (must be clear that the two ΔS_{total} values at the different temperatures have been considered)	Just 'as temperature increases ΔS_{total} increases'	
	Because ΔS_{total} increases equilibrium constant increases (1)		

Question Number	Acceptable Answers	Reject	Mark
18 (a)	pH = (-log 0.25) = 0.602 / 0.60 / 0.6 Ignore significant figures		1

Question Number	Acceptable Answers	Reject	Mark
18 (b) (i)	$(K_a =) [H^+][CH_3CH_2COO^-]$ $[CH_3CH_2COOH]$	Wrong / missing charge on CH ₃ CH ₂ COO	1
	ALLOW [H₃O⁺] for [H⁺]	$K_a = \frac{[H^+]^2}{[CH_3CH_2COOH]}$	
	ALLOW C ₂ H ₅ for CH ₃ CH ₂	unless full expression also given	
	ALLOW [H ⁺][A ⁻] if HA and A ⁻ identified [HA]	3	

Question Number	Acceptable Answers	Reject	Mark
18 (b) (ii)	1.3 x $10^{-5} = \frac{[H^+]^2}{0.25}$ / rearrangement of this expression (1) ([H ⁺] = 1.8 x 10^{-3})		2
	pH = 2.74 (1)		
	Correct answer with no working scores (2) No TE for incorrect [H ⁺]		
	Ignore significant figures except 1 Minimum of 1 decimal place needed		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (i)	$CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COO^{(-)}Na^{(+)} + H_2O$	Equations for ethanoic acid	1
	OR $CH_3CH_2COOH + OH^- \rightarrow CH_3CH_2COO^- + H_2O$		
	Accept CH ₃ CH ₂ CO ₂ H, C ₂ H ₅ COOH, C ₂ H ₅ CO ₂ H		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (ii)	1.3 x $10^{-5} = [H^{+}][5 \times 10^{-2}]$ (concentration ratio) [7.5 x 10^{-2}]		2
	OR		
	1.3 x $10^{-5} = \underline{[H^+](1 \times 10^{-3})}$ (ratio by moles) (1.5 x 10^{-3}) (ratio by moles allowed as volumes acid and salt equal) (1)		
	$([H^+] = 1.95 \times 10^{-5})$		
	pH = 4.7 / 4.7099654 (1)		
	Second mark dependent on first Correct answer with or without working (2)		
	OR		
	pH = pK _a -log (1.5×10^{-3}) 1 x 10 ⁻³		
	OR TATO		
	pH = pK _a -log (7.5×10^{-2}) (1) 5 x 10 ⁻²		
	pH = 4.7 (1)		
	Correct answer with or without working (2)		
	Accept any value which rounds to 4.7		

Question Number	Acceptable Answers		Reject	Mark
*18 (c) (iii)	Mixture is a buffer	(1)		3
	EITHER			
	OH combines with H in solution	(1)	NaOH combines	
	Propanoic acid dissociates to replace H ⁺ Correct equations could gain these mark	` '		
	OR			
	OH ⁻ reacts with propanoic acid Correct equation could gain this mark	(1)		
	Significant quantities of weak acid and sa both present /ratio of acid and salt does change			
	ALLOW a reservoir of weak acid and salt present: Allow conjugate base for salt	, ,		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (iv)	S-shaped curve, vertical at 25 cm ³ (with kink at start) (1)		3
	Starting at pH 2-3 (TE from (b)(ii), finishing at pH 12 -13 (1)		
	Vertical section between 3 and 6 units high centred round a pH of between 8 and 9 (1)		
	Vertical section should not extend over more than ±2.5cm ³ This section should start between 5.5 and 7.5 and		
	finish between 9.5 and 11.5 but do not penalise for very small differences.		
	Reverse curve maximum 2		

Question	Acceptable Answers		Reject	Mark
Number				
18 (c) (v)	Either Need indicator changing in vertical region of		Just "the equivalence	2
	curve / need indicator changing where pH		point is outside the	
	changes sharply / bromocresol green changes		bromocresol green	
	before the vertical region	(1)	range"	
	Not bromocresol green which changes at			
	3.8 - 5.4	(1)		
	OR			
	pK _{in} ±1 must be in vertical section / sharply			
	changing section	(1)		
	Not bromocresol green because pK _{in} is 4.7	(1)		
	TE from curve with vertical section including	n∐		
	TE from curve with vertical section including 3.7 - 5.7	рп		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (i)	Dilute acid / dilute strong named acid or formula / NaOH(aq) followed by dilute acid /water plus dilute acid / water plus H ⁺	NaOH alone water any weak acid concentrated sulfuric acid HCN acid hydrolysis alone	1

Question Number	Acceptable Answers	Reject	Mark
18 (d) (ii)	$\begin{array}{c} CH_3CH_2COCl + H_2O \to CH_3CH_2COOH + HCl \ / \\ C_2H_5COCl + H_2O \to C_2H_5COOH + HCl \end{array}$	Equations with NaOH or OH	1
	Accept displayed formula		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (iii)	Colour change orange to green / blue		1

Question Number	Acceptable Answers	Reject	Mark
18 (e)	Reducing agent /Reduction (of the acid) occurs (1)		2
	Li Al H_4 / lithium tetrahydridoaluminate / lithium aluminium hydride (1)	Lithal without correct name or formula	
	Allow minor error in name if correct formula is given		
	Ignore solvent		
	ALLOW nucleophile AND H ⁻ for 1 mark		

Question Number	Acceptable Answers	Reject	Mark
19 (a)	Quenches reaction / stops reaction / slows reaction / freezes reaction (1) EITHER by neutralizing the acid / removing the acid / neutralizing the catalyst / removing the catalyst	By neutralizing HI Just "by diluting the reaction mixture" just "by neutralizing the reaction mixture"	2
	OR		
	So that the acid does not react with the thiosulfate (1)		

Question	Acceptable Answers	Reject	Mark
Number			
19 (b)	Starch (solution)		1

Question	Acceptable Answers	Reject	Mark
Number			
	First mark So that [propanone] and [acid] are (virtually) constant OR so that the [propanone] and [H ⁺] do not affect	Propanone and acid are in excess, without reference to further comments	2
	so that the [propanone] and [H ⁺] do not affect the rate OR Propanone and acid are in excess so changes in concentration don't affect rate (1) Second mark And therefore rate changes would only depend or [iodine] OR so that the overall order is not determined ALLOW [lodine] is the limiting factor (1) NOTE "so that only the [I ₂] changes" scores (2) "so that only the I ₂ concentration changes" scores (2) "so that only the I ₂ changes" scores (1)		

Question Number	Acceptable Answers		Reject	Mark
19 (d)	Zero order (Gradient =) rate is constant / I ₂ (concentrations) doesn't affect rate / rate of change of I ₂ (concentration) doesn't change with time	(1) ation) (1)	Just 'straight line' Or just 'gradient is constant' [Thiosulfate] or volume of Thiosulfate is proportional to time without reference to iodine Reference to half life [I ₂] is proportional to rate	2
	Mark independently			

Question Number	Acceptable Answers	Reject	Mark
19 (e)	Measuring cylinder quicker / Measuring cylinder can measure a variety of volumes (1) ALLOW Measuring cylinder can be plastic so unbreakable Comment on lower cost of measuring cylinder if qualified with a reason Pipette more accurate / (graduated) pipette more precise / pipette can be used to extract samples from a reaction mixture (for titration) (1)	Just "Measuring cylinder easier to use" Easier to clean Measuring cylinder can be used for large volumes Pipette more reliable Ignore references to easier	2

Question Number	Acceptable Answers	Reject	Mark
19 (f) (i)	To keep (total) volume constant / to make the (total) volume 32 cm ³ / to make concentrations proportional to volume of reactant	To keep concentrations constant	1

Question Number	Acceptable Answers	Reject	Mark
19 (f) (ii)	First order wrt propanone with explanation (1) First order wrt hydrogen ions/ sulfuric acid, with explanation (1) Explanation can be in terms of experiments 1 and 3 (propanone) or 1 and 2 (acid) and can be in terms of concentration or volume		3
	Rate = $k[CH_3COCH_3][H^+]([I_2]^0)$ / Rate = $k[CH_3COCH_3][H_2SO_4]([I_2]^0)$ (1) ALLOW names of propanone and sulfuric acid in place of formulae	Expressions without rate or k Expressions with K_c R / r for rate	
	Ignore case of k in rate equation Ignore order wrt iodine even if wrong Third mark is consequential if incorrect orders of propanone and acid given.		

TOTAL FOR SECTION B = 50 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
20 (a)	Q: O-H ALLOW OH - O - H (1)	Just 'alcohol' — OH	2
	R: $C=O$ ALLOW $-C=O$	Just 'carbonyl' - C O	
	- C = O (1)IGNORE namesACCEPT answers written on spectrum		

Question Number	Acceptable Answers	Reject	Mark
20 (b) (i)	Y = methanol / CH_3OH (1) Any two of the following: Molecular ion / M^+ / M_r / CH_3OH^+ / methanol = 32 CH_3^+ = 15 CH_3O^+ / CH_2OH^+ = 31 $CHOH^+$ / CH_2O^+ = 30 COH^+ = 29 CO^+ = 28 (1)		2
	Charges not required		
	TE in second mark for two correct possible peaks from an incorrect compound.		

Question	Acceptable Answers		Reject	Mark
Number				
20 (b) (ii)	Two (1)			2
	This mark may be scored if two shifts are	given.		
	Any two shifts correctly identified: -OH at 2.0-4.0 / any value in this range H-C-O at 3.0- 4.2 / any value in this range H in CH ₃ OH at 3.39 (ppm)	e (1)	CH in an alkane at 0.1-1.9	
	Allow TE for ethanol with three peaks and three correct shift values: -OH at 2.0-4.0 / any value in this range H-C-O at 3.0- 4.2 / any value in this range	(1)	Just CH ₃ OH at 3.39	
	CH in an alkane at 0.1-1.9	(1)		

Question Number	Acceptable Answers	Reject	Mark
20 (c) (i)	Z contains two -OH/ one alcohol + one acid		1
	ALLOW two alcohol groups / is a diol		

Question Number	Acceptable Answers	Reject	Mark
20 (c) (ii)	Z is an acid / contains -COOH / contains -CO ₂ H/ contains a carboxylic acid group / contains H ⁺		1

Question	Acceptable Answers	Reject	Mark
Number			
20 (c) (iii)	Z is a secondary alcohol/ a ketone is formed from Z / Z contains -C-OH (1) H	Z is a ketone	1

Question	Acceptable Answers	Reject	Mark
Number			
20 (c) (iv)	(lodoform produced) so Z contains CH ₃ CH(OH)-		1
	TE if Z is identified as a ketone in (iii):		
	Z contains CH ₃ C=O / Z is a methyl ketone		

Question	Acceptable Answers	Reject	Mark
Number			
20 (d)	Answers will be based on several pieces of information (molecular formula, products of ester hydrolysis, answers to (c)) which may be contradictory if errors have been made.		2
	ALLOW TE marks for formulae which are chemically possible (ie no 5 bonded carbons etc) and based on most of the deductions but not necessarily all .		
	Z is CH ₃ CH(OH)CH ₂ COOH (1) Stand alone mark		
	ALLOW TE for an acid with OH in wrong position in Z if oxidation product identified as aldehyde		
	TE for $Z = CH_3COCH_2COOH$ if identified as ketone in (iii)		
	X is CH ₃ CH(OH)CH ₂ COOCH ₃ (1) Stand alone mark TE for a methyl ester of Z		

Question Number	Acceptable Answers	Reject	Mark
21 (a) (i)	Transesterification	Substituted	1
	Ethanol transesterification	esterification	

Question Number	Acceptable Answers	Reject	Mark
21 (a) (ii)	To prevent hydrolysis/ to stop fatty acids forming / to stop breakdown of esters / water reacts with esters/ water is a better nucleophile than ethanol	To dilute ethanol Ethanol would react with water A reaction would occur (unspecified)	1

Question Number	Acceptable Answers	Reject	Mark
Number 21 (b)	(Vegetable) Fats/ oils are renewable (crude oil is not) / biodiesel comes from a renewable source / doesn't use up fossil fuel resources/ carbon footprint is less / (closer to) carbon neutral / growing vegetables absorb CO ₂ If more than one answer is given, and one is incorrect, no mark	Just "made from plants" Just "crude oil is not sustainable" Less polluting produces less greenhouse gases / less CO ₂ Burns more cleanly Requires less energy for production	1
	Ignore comments on biodegradability		

Question Number	Acceptable Answers		Reject	Mark
21 (c)	Substances to be separated have different (force of) attraction to / affinity for / solubilities in / adsorption to one or both of the mobile and stationary phases OWTTE (*ALLOW absorption		Different retention times without a reason why Different volatilities Different masses Different reactivity	5
			Different reactions	
			Different interactions	
	GC: mobile phase a (inert / unreactive) gas OR GC: mobile phase nitrogen / helium / argon / other named inert gas (1	1)		
	GC: Stationary phase a liquid (on an (inert) sol / a solid	lid) 1)		
	HPLC: stationary phase a solid / silica (1	1)		
	HPLC: mobile phase a liquid (*)	1)		

TOTAL FOR SECTION C = 20 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026200 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH